Field Evaluation Tera Sensor - NextPM

Air Quality Sensor Performance Evaluation Center

Background

- From 09/29/2021 to 11/28/2021, three Tera Sensor NextPM (hereinafter NextPM) sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants
- <u>NextPM (3 units tested)</u>:
 - Particle sensor: optical; non-FEM (Tera Sensor -NextPM)
 - > Each unit reports: $PM_{1.0}$, $PM_{2.5}$ and PM_{10} (µg/m³)
 - ➤ Unit cost: ~\$70
 - Time resolution: 10 seconds
 - ➤ Units IDs: 1207, 1222, 1342

- GRIMM EDM 180 (reference instrument):
 - Optical particle counter (FEM PM_{2.5})
 - \succ Measures PM_{1.0}, PM_{2.5}, and PM₁₀ (µg/m³)
 - ➢ Cost: ~\$25,000 and up
 - Time resolution: 1-min
- <u>Teledyne API T640 (reference instrument)</u>:
 - Optical particle counter (FEM PM_{2.5})
 - \succ Measures PM_{1.0}, PM_{2.5} and PM₁₀ (µg/m³)
 - ➤ Cost: ~\$21,000
 - ➤ Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from Unit 1207, Unit 1222 and Unit 1342 was ~ 95%, 96% and 96% for all PM measurements, respectively.

NextPM; intra-model variability

- Absolute intra-model variability was ~ 0.67, 0.65 and 0.81 µg/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 6.9%, 4.8% and 3.8% for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{1.0} GRIMM and T640

- Data recovery for $PM_{1.0}$ from GRIMM and T640 was ~ 88% and 100%, respectively.
- Very strong correlations between the reference instruments for $PM_{1.0}$ measurements ($R^2 \sim 0.97$) were observed.

Reference Instruments: PM_{2.5} FEM GRIMM and FEM T640

- Data recovery for PM_{2.5} from FEM GRIMM and FEM T640 was ~ 88% and 100%, respectively.
- Very strong correlations between the reference instruments for $PM_{2.5}$ measurements ($R^2 \sim 0.94$) were observed.

Reference Instruments: PM₁₀ GRIMM and T640

- Data recovery for PM_{10} from GRIMM and T640 was ~ 88% and 100%, respectively.
- Strong correlations between the reference instruments for PM_{10} measurements ($R^2 \sim 0.88$) were observed.

NextPM vs GRIMM (PM_{1.0}; 5-min mean)

NextPM vs FEM GRIMM (PM_{2.5}; 5-min mean)

NextPM vs GRIMM (PM₁₀; 5-min mean)

- The NextPM sensors showed weak correlations with the corresponding GRIMM data (0.33 < R² < 0.43)
- Overall, the NextPM sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The NextPM sensors did not seem to track the PM₁₀ diurnal variations as recorded by GRIMM

NextPM vs GRIMM (PM_{1.0}; 1-hr mean)

NextPM vs FEM GRIMM (PM_{2.5}; 1-hr mean)

- The NextPM sensors showed strong to very strong correlations with the corresponding FEM GRIMM data (0.88 < R² < 0.91)
- Overall, the NextPM sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The NextPM sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

NextPM vs GRIMM (PM₁₀; 1-hr mean)

- The NextPM sensors showed weak correlations with the corresponding GRIMM data (0.35 < R² < 0.44)
- Overall, the NextPM sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The NextPM sensors did not seem to track the PM₁₀ diurnal variations as recorded by GRIMM

NextPM vs GRIMM (PM_{1.0}; 24-hr mean)

NextPM vs FEM GRIMM (PM_{2.5}; 24-hr mean)

- The NextPM sensors showed very strong correlations with the corresponding FEM GRIMM data ($0.92 < R^2 < 0.94$)
- Overall, the NextPM sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The NextPM sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

 PM_{25} (24-hr mean, $\mu g/m^3$)

v = 0.9559x + 5.7932

 $R^2 = 0.9366$

0

NextPM vs GRIMM (PM₁₀; 24-hr mean)

- The NextPM sensors showed weak correlations with the corresponding GRIMM data (0.32 < R² < 0.38)
- Overall, the NextPM sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The NextPM sensors did not seem to track the PM₁₀ diurnal variations as recorded by GRIMM

15

NextPM vs T640 (PM_{1.0}; 5-min mean)

NextPM vs FEM T640 (PM_{2.5}; 5-min mean)

NextPM vs T640 (PM₁₀; 5-min mean)

NextPM vs T640 (PM_{1.0}; 1-hr mean)

NextPM vs FEM T640 (PM_{2.5}; 1-hr mean)

- The NextPM sensors showed very strong correlations with the corresponding FEM T640 data (0.94 < R² < 0.95)
- Overall, the NextPM sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The NextPM sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

NextPM vs T640 (PM₁₀; 1-hr mean)

NextPM vs T640 (PM_{1.0}; 24-hr mean)

NextPM vs FEM T640 (PM_{2.5}; 24-hr mean)

- The NextPM sensors showed very strong correlations with the corresponding FEM T640 data (0.97 < R² < 0.99)
- Overall, the NextPM sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The NextPM sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

NextPM vs T640 (PM₁₀; 24-hr mean)

- correlations with the corresponding T640 data $(0.65 < R^2 < 0.72)$
- Overall, the NextPM sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The NextPM sensors seemed to track the PM₁₀ diurnal variations as recorded by T640

0

20

40

Unit 1342

PM₁₀ (24-hr mean, μg/m³)

y = 1.3537x + 24.506

 $R^2 = 0.7172$

60

80

100

	Average of 3 Sensors, PM _{1.0}		NextPM vs GRIMM & T640, PM _{1.0}						GRIMM & T640 (PM _{1.0} , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	9.8	11.0	0.89 to 0.94	1.02 to 1.23	0.9 to 2.8	-4.3 to -1.5	2.1 to 4.6	3.1 to 6.4	12.2 to 14.0	11.2 to 12.9	0.2 to 92.1
1-hr	9.6	10.8	0.90 to 0.95	1.02 to 1.23	0.8 to 2.7	-4.3 to -1.5	2.1 to 4.5	3.0 to 6.2	12.2 to 14.0	11.1 to 12.8	0.2 to 69.1
24-hr	9.5	9.3	0.96 to 0.98	0.95 to 1.31	1.2 to 1.9	-4.2 to -1.2	1.7 to 4.3	2.3 to 5.3	12.6 to 14.0	10.2 to 11.4	0.7 to 50.8
	Average of 3 Sensors, PM _{2.5}		NextPM vs FEM GRIMM & FEM T640, PM _{2.5}						FEM GRIMM & FEM T640 (PM _{2.5} , µg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	13.4	13.5	0.87 to 0.95	0.87 to 1.08	3.7 to 5.8	-5.4 to -3.2	3.9 to 5.6	4.7 to 6.8	17.8 to 18.1	12.5 to 13.9	0.6 to 119.6
1-hr	13.2	13.3	0.89 to 0.95	0.87 to 1.09	3.6 to 5.7	-5.4 to -3.2	3.8 to 5.5	4.6 to 6.6	17.8 to 18.1	12.3 to 13.8	0.9 to 79.2
24-hr	13.7	11.0	0.93 to 0.98	0.80 to 1.13	3.1 to 6.5	-5.2 to -3.3	3.4 to 5.3	3.4 to 5.9	17.8 to 18.6	10.6 to 12.1	3.3 to 57.6
	Average of 3 Sensors, PM ₁₀		NextPM vs GRIMM & T640, PM ₁₀						GRIMM & T640 (PM ₁₀ , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	21.7	17.7	0.34 to 0.66	1.03 to 1.60	18.7 to 24.9	-31.6 to -25.5	26.2 to 31.6	34.4 to 38.3	47.1 to 52.3	29.1 to 32.3	0.9 to 414.7
1-hr	21.5	17.4	0.35 to 0.67	1.02 to 1.59	18.9 to 25.5	-31.6 to -25.8	26.3 to 31.6	34.6 to 37.8	47.1 to 52.3	27.3 to 31.2	1.2 to 374.1
24-hr	21.4	14.0	0.32 to 0.72	0.66 to 1.35	24.2 to 33.0	-31.7 to -25.4	26.1 to 31.7	29.5 to 33.9	47.5 to 52.3	17.1 to 20.2	16.0 to 97.4

¹Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Discussion

- The three NextPM sensors' data recovery from Unit 1207, Unit 1222 and Unit 1342 was ~ 95%, 96% and 96% for all PM measurements, respectively
- The absolute intra-model variability was ~ 0.67, 0.65 and 0.81 μ g/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively
- Very strong correlations between GRIMM and T640 for PM_{1.0} (R² ~ 0.97, 1-hr mean); very strong correlations between FEM GRIMM and FEM T640 for PM_{2.5} (R² ~ 0.94, 1-hr mean) and strong correlations between GRIMM and T640 for PM₁₀ (R² ~ 0.88, 1-hr mean) mass concentration measurements
- PM_{1.0} mass concentrations measured by the NextPM sensors showed strong to very strong correlations with the corresponding GRIMM and T640 data (0.89 < R² < 0.95, 1-hr mean). The sensors underestimated PM_{1.0} mass concentrations as measured by GRIMM and T640
- PM_{2.5} mass concentrations measured by the NextPM sensors showed strong to very strong correlations with the corresponding FEM GRIMM and FEM T640 data (0.88 < R² < 0.95, 1-hr mean). The sensors underestimated PM_{2.5} mass concentrations as measured by FEM GRIMM and FEM T640
- PM₁₀ mass concentrations measured by the NextPM sensors showed weak to moderate correlations with the corresponding GRIMM and T640 data (0.35 < R² < 0.68; 1-hr mean). The sensors underestimated PM₁₀ mass concentrations as measured by GRIMM and T640
- No sensor calibration was performed by South Coast AQMD Staff for this evaluation
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- All results are still preliminary